Analysis of time-series gene expression data with dynamic Bayesian networks

نویسنده

  • Perry C. Groot
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring gene networks from time series microarray data using dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria f...

متن کامل

Integrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks

Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal the temporal program of gene expression from microarray expression data, is essential in systems biology. To overcome the challenges posed by the noisy and under-sampled microarray data, developing data fusion methods to integrate legacy biological knowledge for gene network reconstruction is a promising d...

متن کامل

Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis

MOTIVATION Reverse engineering gene regulatory networks, especially large size networks from time series gene expression data, remain a challenge to the systems biology community. In this article, a new hybrid algorithm integrating ordinary differential equation models with dynamic Bayesian network analysis, called Differential Equation-based Local Dynamic Bayesian Network (DELDBN), was propose...

متن کامل

Regulatory Network Reconstruction Using Stochastic Logical Networks

This paper presents a method for regulatory network reconstruction from experimental data. We propose a mathematical model for regulatory interactions, based on the work of Thomas et al. [25] extended with a stochastic element and provide an algorithm for reconstruction of such models from gene expression time series. We examine mathematical properties of the model and the reconstruction algori...

متن کامل

Stability of Inferring Gene Regulatory Structure with Dynamic Bayesian Networks

Though a plethora of techniques have been used to build gene regulatory networks (GRN) from time-series gene expression data, stabilities of such techniques have not been studied. This paper investigates the stability of GRN built using dynamic Bayesian networks (DBN) by synthetically generating gene expression time-series. Assuming scale-free topologies, sample datasets are drawn from DBN to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005